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Classification of EEG signals in self-paced Brain Computer Interfaces 
(BCI) is an extremely challenging task. The main difficulty stems from 
the fact that start time of a control task is not defined. Therefore it is 
imperative to exploit the characteristics of the EEG data to the extent 
possible. In sensory motor self-paced BCIs, while performing the mental 
task, the user’s brain goes through several well-defined internal state 
changes. Applying appropriate classifiers that can capture these state 
changes and exploit the temporal correlation in EEG data can enhance 
the performance of the BCI. In this paper, we propose an ensemble 
learning approach for self-paced BCIs. We use Bayesian optimization to 
train several different classifiers on different parts of the BCI hyper-
parameter space. We call each of these classifiers Neural Network 
Conditional Random Field (NNCRF). NNCRF is a combination of a 
neural network and conditional random field (CRF). As in the standard 
CRF, NNCRF is able to model the correlation between adjacent EEG 
samples. However, NNCRF can also model the nonlinear dependencies 
between the input and the output, which makes it more powerful than 
the standard CRF. We compare the performance of our algorithm to 
those of three popular sequence labeling algorithms (Hidden Markov 
Models, Hidden Markov Support Vector Machines and CRF), and to 
two classical classifiers (Logistic Regression and Support Vector 
Machines). The classifiers are compared for the two cases: when the 
ensemble learning approach is not used and when it is. The data used in 
our studies are those from the BCI competition IV and the SM2 dataset. 
We show that our algorithm is considerably superior to the other 
approaches in terms of the Area Under the Curve (AUC) of the BCI 
system.
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1 Introduction

A brain computer interface (BCI) aims at detecting the
presence of specific patterns in a person’s brain ac-
tivity. These patterns relate to the user’s intention to
control a device [1]. If such patterns are detected in
the brain waves, then the BCI issues specific signals to
control the device.

BCI systems can be classified into two categories:
synchronous and self-paced [2]. In synchronous BCIs,
the user controls the BCI output during specific short
periods. Therefore, the user can only issue a control
command when he/she is prompted to operate the
system. Users of self-paced BCIs, on the other hand,

can control the system whenever they wish. The peri-
ods during which a user is issuing a signal to control
the system are called Control states, and those dur-
ing which the user is not controlling the system are
called No-Control (NC) states. During the NC states,
the BCI system should be designed so it does not issue
any control signal; otherwise a false positive output is
produced.

Despite the much progress made in self-paced
BCIs, they remain extremely challenging to design,
compared with synchronous BCI systems. This is be-
cause (unlike the case of synchronous BCIs), a user
of a self-paced BCI should be able to control the sys-
tem at any time, but the BCI system does not have any
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knowledge about the onset of any control command.
To address this property of self-paced BCIs (i.e.

the onset detection of intentional control), one of
the following two approaches can be used. The
first approach exploits the properties of the elec-
troencephalogram (EEG) data to design more ad-
vanced classification and/or feature extraction tech-
niques (the focus of this paper). For instance in [3]
and [4] the authors have used more advanced classi-
fiers to design self-paced BCI. The second approach
takes advantage of other cognitive tasks to detect the
onset of the intentional control. For instance in [5] the
authors have used high pitch and siren-like sounds to
facilitate distinguishing control tasks from no-control
states. In [6] the authors have used a combination
of motor imagery and P300 potential to design self-
paced BCIs.

The task of classifying brain signals in a self-paced
BCI has been formulated as a sequential supervised
learning problem [7]. In sequential learning, a se-
quence of observations and their corresponding labels
are known, and the goal is to construct a classifier that
predicts the sequence of the labels of a new sequence
of observations.

The most popular way to obtain observation se-
quences for sequential supervised learning is to use a
sliding window over the signal (these windows might
overlap). This approach takes consecutive input win-
dows of the brain signal (each of length w millisec-
onds), extracts features from each window and as-
signs a label to each window. The labels correspond
to whether or not the user is issuing a command to
operate the device. The sequence of the extracted fea-
ture vectors and their corresponding labels are used
to train a classifier. For a new sequence, the trained
classifier estimates the label of each window (i.e. the
intention of the user).

The advantage of using the sliding window ap-
proach is that it converts the sequential supervised
learning problem into a standard classification prob-
lem. Thus any classical supervised learning method
can be used to solve the problem. The majority of
the publications in the field have used this method
to build different self-paced BCIs [8], [9], [10]. The
disadvantage of the sliding window approach is that
the sequential correlation of the labels of consecutive
EEG windows is not exploited. Yet, the observations
and the labels of nearby windows are usually related
to each other. Thus there is a sequential correlation
between adjacent EEG windows, and this knowledge
could be used to improve the performance of the sys-
tem.

In [11] the authors show that the brain goes
through several well-defined internal state changes
while the subject is carrying out a motor imagery
mental task. Employing an algorithm that can
model/exploit these state transitions can enhance the
performance of the BCI. The class of sequence label-
ing algorithms are able to exploit the temporal struc-

ture of the EEG data. Among these algorithms, the
most popular is the Hidden Markov Model (HMM)
[12], which is a generative classifier. A generative
classifier models the joint probability of observations
and label sequences. Although the HMM classifier
has been successful in synchronous BCIs, in [13] the
authors concluded that the sliding window approach
(i.e. using classical classifiers) is superior to HMM in
self-paced BCIs. Due to intractability issues, HMMs
assume the observations are independent given the
states. This makes it difficult to incorporate knowl-
edge about the structure of the EEG data into the
model by extracting informative overlapping observa-
tions (the problem of over-counting evidence).

Another type of sequence labeling classifiers (be-
sides HMM) are the discriminative ones. These clas-
sifiers directly maximize the conditional likelihood of
the label sequence given the observations. These al-
gorithms have yielded very promising results in the
fields of natural language processing [14], and activ-
ity recognition [15] which are very similar in nature
to the task of self-paced classification of BCI. The ad-
vantage of these models is that they give the user the
freedom to extract many informative and overlapping
features from the observation sequence 1. These fea-
tures might be extracted from previous windows in
the brain signal and can be correlated.

In [16], [17] and [18], the authors applied discrim-
inative sequence labeling algorithms to self-paced
BCIs, to classify different motor imagery tasks. In
this paper, we use a discriminative sequence label-
ing algorithms to discriminate between NC and con-
trol states. The challenge here is that during the con-
trol states, i.e. while the subject is performing the
mental task, a set of well-defined state changes occur.
However, during the NC states, the subject can be in
any mental state, therefore finding specific patterns
in the EEG signal during NC states is extremely diffi-
cult. In other words, discriminating between two pre-
determined mental tasks (e.g. right hand versus left
hand movement) is much easier than discriminating a
predetermined mental task (e.g. left hand movement)
from NC states.

Our contributions in this paper are two-fold. The
first is a new discriminative sequence labeling clas-
sifier for self-paced BCIs. Our approach combines
the power of one of the most popular discrimina-
tive sequence labeling classifiers (Conditional Ran-
dom Field) to exploit the correlation in consecutive
EEG windows. It also utilizes a neural network to
extract high-level features from the observations. We
call our classifier Neural Network Conditional Ran-
dom Field (NNCRF). We compare its performance to
those of Hidden Markov Models (HMM), and two
of the most popular discriminative sequence labeling
classifiers i.e. Conditional Random Field (CRF) [19]
and Structural Support Vector Machines (SSVM) [20].
We also compare the performance of these discrim-
inative sequence labeling classifiers with two popu-

1These observations correspond to the features extracted from the raw EEG signal.
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lar classical classifiers i.e. Support Vector Machines
(SVM) [21] and Logistic Regression classifiers [22].
Our second contribution is discussed in the latter part
of the paper, where we propose an ensemble learn-
ing approach to further improve the accuracy of the
BCI system. We use Bayesian optimization [23] to
train several diverse classifiers on different parts of
the BCI hyper-parameter space. We evaluate the per-
formance of different algorithms using the data from
the BCI competition IV [24] and SM2 [25] dataset, and
show that our algorithm is considerably superior to
the existing approaches in terms of the Area Under
the Curve (AUC) of the BCI system.

In the rest of this paper, in section 2, we describe
the feature function in discriminative sequence label-
ing classifiers. In section 3, we introduce our pro-
posed sequence labeling classifier i.e. NNCRF. In
section 4 we describe our ensemble classification ap-
proach. In section 5, we explain the datasets, and in
sections 6 and 7, the results of different algorithms are
compared.

2 Feature Function in Discrimina-
tive Sequence Labeling

For sequence labeling algorithms, we assume that
each data sample in the training set consists of a se-
quence of observations, 2 and its corresponding la-
bel sequence. Assuming the training set is {xi , yi}Ni=1
where N is the number of training samples. xi is
the sequence of observations from K consecutive win-
dows and yi is the corresponding sequence of K la-
bels. Every w milliseconds of the EEG creates a win-
dow. xi is created by concatenating the observa-
tions from each of K consecutive windows i.e. xi =
[xi1, ...,xik , ...,xiK ] and xik corresponds to the observa-
tions from the kth window in the sequence number
i 3. Likewise, yi is created by concatenating the la-
bels of each of these K consecutive windows i.e. yi =
[yi1, ..., yik , ..., yiK ] and yik corresponds to the label of
the kth window in the sequence number i.

The discriminative sequence labeling algorithms
have the advantage of enabling a set of features to be
designed based on the structure of the data. Each fea-
ture is a function of the joint observations and their
labels i.e. Φ : X × Y− > R, where X is the observation
space, Y is the label space and R is the real space. In
classical classification the feature vector is built based
on the observations (X) only. However, here the idea
is to extract features from the joint observations (X)
and label (Y ) spaces. In this way, a feature function
Φ measures the joint compatibility of x (xi) and y (yi)
4. Although more complex types of features can be
used, the feature functions we use here are inspired
from first order HMMs.

The first feature function we used, is defined as

φσ0 = I(yk = σ ), σ ∈ Σ, (1)

where I represents the indicator function, and Σ cor-
responds to the set of possible label values (i.e. NC
states and movement states). The above feature func-
tion is based on Y only.

The second set of features forms a vector φk,1:L
with L dimensions that captures the relation between
the observation vector and the kth label in the se-
quence. We are assuming the observation vector is of
dimension L. Each element φσk,l of the vector φσk,1:L is
defined as

φσk,l = xk,lI(yk = σ ), σ ∈ Σ, (2)

where xk,l is the lth dimension of the observation vec-
tor.

The third type of features is defined as

φσ1,σ2
k(k−1) = I(yk = σ1 ∧ yk−1 = σ2), σ1,σ2 ∈ Σ, (3)

where φσ1,σ2
k(k−1) captures the relation between the kth

and (k − 1)th labels in the sequence.

3 Neural Network Conditional
Random Fields

In this section we first describe the standard Condi-
tional Random Field (CRF), then we describe Neural
Network CRF. CRF is one of the most popular discrim-
inative sequence labeling classifiers. In general the
linear chain Conditional Random Field (CRF) classi-
fier models the posterior distribution of the form

Pr(Y |X) =

exp(
J∑
j=1

λj

K∑
k=1

Φj (yk−1, yk ,x,k))

Z(X)
, (4)

where K is the sequence length, J is the number of fea-
tures extracted from the joint observation labels pair,
and Φj is the feature function. λjs are the parameters
of the model which are learned based on the training
data. Z(x) is the normalization factor (partition func-
tion):

Z(X) =
∑
y′1

∑
y′2

...
∑
y′K

exp(
J∑
j=1

λj

K∑
k=1

Φj (y
′
k−1, y

′
k ,x,k)).

(5)
To calculate the partition function we use forward-
backward algorithm which is a dynamic program-
ming algorithm.

Using the above mentioned set of features (equa-
tions 1, 2 and 3) the posterior function will be of the

2These observations correspond to the features extracted from the raw EEG signal.
3In our case, xik corresponds to the band-power of the window in a specific frequency band.
4For the sake of clarity, we drop the index i in the remainder of the text
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form

Pr(y1:K |x1:K ) =

exp
( K∑
k=1

(byk +W T
yk ,1:Lxk) +

K∑
k=2

Vyk−1,yk

)
Z(X)

,

(6)
where byk , Wyk ,1:L and Vyk−1,yk are the parameters of
the posterior distribution and should be learned us-
ing the training dataset. The set of parameters byk ,
Wyk ,1:L and Vyk ,yk−1

capture the importance of the first,
second and third type of features respectively.

To learn the optimal values of the parameters, we
minimize the L2 regularized negative log likelihood

min
λ

N∑
i=1

−Log Pr(yi |xi) +CλTλ, (7)

where the vector λ consists of the parameters of the
model (i.e. byk , Wyk ,1:L and Vyk−1,yk ), and C is the reg-
ularization coefficient. To find the optimal value of
the parameters, we use stochastic gradient descent al-
gorithm. As the loss function is convex, the gradient
descent algorithm converges to the global optimum of
the loss function.

For the inference i.e. assigning a sequence of la-
bels to xN+1, we assign the most probable sequence as
the predicted labels i.e.

ypredicted = argmax
y

P (y|xN+1). (8)

A Viterbi [12] like algorithm is used to find the most
probable sequence of labels.

The linearity of the exponent term in CRF makes
this classifier to have less expressive power compared
to the classifiers that exploit kernels. A good approach
that makes these algorithms more powerful is to pass
the data through a feed-forward neural network be-
fore applying the CRF part. Neural networks trans-
form the observation vector into high level features
which are then used as the input to the CRF. As a
result, the exponent term in CRF (i.e. the exponent
term in equation 6) becomes non-linear because of the
several layers of non-linear activation functions that
have been applied on the observation vector [26] [27].
This combination of a neural network followed by a
CRF forms our proposed classifier which we denote by
NNCRF (Neural Network Conditional Random Field).

The NNCRF can be viewed as a standard linear
chain CRF that uses a high level representation of
the observations. Therefore, the posterior function of
NNCRF has the same form as in equation 6 except
that the xk terms are replaced with the hM (xk) term
which represents the output of a feed-forward neural
networks with M layers.

Pr(Y |X) =

exp(
K∑
k=1

(byk +W T
yk ,1:Lh

(M)(xk)yk ) +
K∑
k=2

Vyk−1,yk )

Z(X)
.

(9)

The output of the (M)th layer (h(M)) is

h(M)(xk) = tanh(b(M−1) +W (M−1)hM−1(xk)), (10)

where b(M−1) and W (M−1) are the weights of the (M −
1)th layer, hM−1(xk) is the output of the (M − 1)th layer
of the neural network, and h0(xk) = xk . To avoid over-
fitting, the weights of the neural networks are the
same for all observations xk in a sequence i.e. the val-
ues of the weights do not depend on k.

Initialization of a neural networks is very crucial
for this algorithm to converge to a good local optima.
For initialization of the neural network, the value of
each parameter is a sample taken from a uniform dis-
tribution U [−γ,+γ] where

γ =

√
6√

size(M) + size(M − 1)
, (11)

where size(M) is the number of hidden units in the
Mth layer of the neural networks.

The loss function is the same as the loss function
of the standard CRF (Equation 7). The values of the
parameters of the neural networks and of the CRF
are jointly optimized using the back propagation algo-
rithm. The learning rate of the stochastic gradient de-
scent algorithm is adjusted using the bold driver ap-
proach. For inference the same algorithm as in stan-
dard linear chain CRF is used.

4 Ensemble of classifiers

In [28], the authors proposed an algorithm to cus-
tomize the synchronous BCI based on the brain char-
acteristics of each subject. Here, we adopt a similar
approach to build an ensemble of classifiers for self-
paced BCIs based on the brain characteristics of each
subject.

The brain characteristics of each subject are cap-
tured in the form of some hyper-parameters of the BCI
system. Hyper-parameters are the parameters of the
BCI system which are selected before feature extrac-
tion and classification. We use Bayesian optimization
which is an iterative algorithm to propose the values
of the hyper-parameters. The proposed values of the
hyper-parameters are used to train different classifiers
on different parts of the input space. Then, we com-
bine the results of the trained classifiers, using aver-
aging, to form the output of the ensemble classifier.

Bayesian optimization [23] [29] optimizes an ob-
jective function g(x) over some bounded set X. The
objective function does not have a closed form expres-
sion and its derivative is unknown. A Bayesian op-
timization algorithm sequentially constructs a prob-
abilistic model for g(x) and then uses this model to
select a candidate for the optimization task. In our
case, the objective function is the cross-validation ac-
curacy of the classifier. The input to the Bayesian opti-
mization algorithm consists of the values of the hyper-
parameters of the BCI system. Therefore the set X is
the hyper-parameter space of the BCI system.
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In this study, the hyper-parameter space of ev-
ery classifier consists of the frequency ranges to fil-
ter the EEG signal, the selected channels (from which
features are extracted), and the window length. For
our proposed NNCRF, we have an additional hyper-
parameter which is the number of neurons in the hid-
den layer of the neural networks. In our experiments,
we use NNCRF with one hidden layer NN.

The first set of hyper-parameters are the frequency
ranges to filter the EEG signal. In motor imagery
BCIs, the event-related desynchronization (ERD) and
the event-related synchronization (ERS) occur in the
upper alpha and the lower beta rhythms of the brain
[11]. Generally the range of the alpha and beta brain
waves are [8 − 12]Hz and [16 − 24]Hz respectively. A
popular approach for extracting features (i.e. build-
ing the observation vector) is to find these frequency
ranges for each subject, then calculate the band-power
of the brain signal in the given frequency ranges. An-
other approach is to apply a filter with a large band-
width in the approximate range ≈ [4 − 35]Hz that in-
cludes both the alpha and the beta brain waves of each
channel, then extract the band-power of the brain sig-
nal. But even when we apply the second approach
it is better to customize the frequency range for each
subject. Therefore, for frequency filtering, in each it-
eration of the Bayesian optimization, our algorithm
chooses one of the two above-mentioned options. The
first option is to apply a filter-bank with two blocks
corresponding to alpha and beta frequencies of the
brain on each channel. The second option is to apply a
filter with a large bandwidth (in the range [4−35]Hz)
that includes both alpha and beta brain waves of each
channel.

The second hyper-parameter is the set of the chan-
nels used to extract features from. For channel se-
lection, our algorithm selects the number of Common
Spatial Pattern (CSP) [30] filters (N = 2, 4, 6). It also
has the option of not applying CSP (i.e. uses all the
channels without applying any spatial filtering).

The third hyper-parameter is the length w (mil-
liseconds) of the window that we extract band-power
features from. For all of the sequence labeling classi-
fiers, we have only used the past two seconds of the
EEG signal to build the observation vector. For se-
quence labeling classifiers, we build a chain of consec-
utive windows as our observation vector. The length
of the chain is therefore 2

|w| × 1000. For classical clas-
sifiers we only look at the past w milliseconds of the
data. As discussed above, for the NNCRF classifier we
have a fourth hyper-parameter which is the number of
neurons in the hidden layer of the neural networks.

The pseudo code of the ensemble of classifiers is
given in Algorithm 1. At each iteration (t) of our al-
gorithm, the optimizer suggests a new set of values
(ht) of the hyper-parameters, then a new classifier (Lt)
is built based on these values. Based on the cross-
validation accuracy of Lt at iteration t, another set of
values of the hyper-parameters is suggested for iter-
ation (t + 1) and this process continues for at most

MAX iterations or when the cross-validation accuracy
plateaus. After running the optimization, we have T
classifiers, each trained on a different subset of the
hyper-parameter space.

The outputs of the classifiers are combined into a
single prediction rule which is much more accurate
than the individual classifiers. We use averaging to
create the output of the ensemble of classifiers. In
general, we seek a model with low bias and high vari-
ance as our final classifier. When the training data
is small and the classifier has high variance, and by
averaging we reduce the variance of the final classi-
fier while preserving the low bias of a single model.
Especially in the case of neural networks which can
get stuck in a local optimum and has a high vari-
ance, creating an ensemble of classifiers i.e. neural
networks which are trained on different parts of the
hyper-parameter space, may result in a better approx-
imation of the best possible classifier.

1. t := 1;
repeat

2. Increment t;
3. Find candidate (ht) from the
hyper-parameter space using Bayesian
optimization;

4. Create an observation matrix Xt from the
brain signals using ht ;

5. Train a new Classifier (Lt) using
observation matrix Xt ;

until t reaches maximum number of iterations
(MAX) or until convergence;

6. Combine L1...LT using averaging to build an
ensemble classifier;

Algorithm 1: The pseudo-code of the proposed algorithm

5 Datasets

To perform the experiments two self-paced sensory
motor BCI datasets have been used. The first dataset,
SM2 [25], was collected from 4 subjects attempting to
activate a switch by performing a right index finger
movement. At random intervals, a cue was displayed
for the subjects. The subjects attempted to activate
a switch by moving their right index finger after the
cue appeared. The EEG was recorded from 10 chan-
nels positioned over the supplementary motor area
and the primary motor cortex (i.e. FC1-4, FCz, C1-4,
Cz).

The second dataset, BCICIV2a, is the dataset IIa
from the BCI competition IV which is recorded from
9 subjects performing 4-class motor imagery (left
hand and right hand, both feet and tongue imagery
movements) tasks. The data consists of 19 chan-
nels along the scalp and recorded in a synchronous
paradigm. We have treated this dataset as a self-paced
BCI dataset. In other words, to evaluate the perfor-
mance of the classifiers on this dataset the time of
transition from previous mental task to the new one
(the time cue was displayed) has not been used. We
have also converted the problem into a binary classi-
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fication task i.e. separating movement imagery from
NC states. All 4-classes of motor-imagery are consid-
ered as movement and the periods in which the sub-
ject did not control the system are considered as the
No-Control class.

6 Results and Discussion

In our experiments, we first compared the perfor-
mance of our proposed NNCRF with the standard
CRF classifier, Hidden Markov Support Vector Ma-
chines (HMSVM), Hidden Markov Models (HMM)
and two popular classical classifiers i.e. Logistic Re-
gression and Support Vector Machines (SVM).

A Hidden Markov Support Vector Machine [31] is
a special case of Structural Support Vector Machines
in which the features are designed to capture the se-
quential nature of the data. The set of feature vectors
we used, capture the dependency between consecu-
tive labels in a sequence (yk and yk−1), and measure
the relation between the observation in the kth win-
dow (xk) and its corresponding label yk in a sequence.

To apply HMMs on self-paced BCIs, we trained
different HMMs for different mental tasks. We trained
two different HMMs, one was trained using NC data
and the other one using the samples of movement (in-
tentional control) task. Then the likelihood of a new
given sequence is calculated using the forward-back
algorithm, and the classification is performed by com-
paring the likelihoods of different HMMs. In this case,
each HMM focuses on learning the structure of the
mental task that it is trained on, rather than learning
to discriminate between different tasks.

The emission function used for HMM is a mix-
ture of Gaussian distributions. The parameters of
the HMM include the transition probabilities, and the
parameters of the mixture of Gaussian distributions.
The parameters are learned by maximizing the like-
lihood of the training dataset. The Baum-Weltch al-
gorithm is used to learn the parameters of the HMM
model.

To select the value of the hyper-parameters for the
first part of our experiments, we searched through
a manually specified set of values for the hyper-
parameters (default values). For frequency filtering,
we applied a filter-bank with two blocks in ranges [8-
12]Hz and [16-24]Hz corresponding to the typical al-
pha and beta frequencies of the brain. For spatial fil-
tering, we tried CSP with two, four and six filters. The
values of these hyper-parameters along with each clas-
sifier’s parameters are adjusted jointly using five-fold
cross-validation. The parameters with the best mean
cross-validation accuracy were used to train a classi-
fier on the training set. We used Area Under the Curve
(AUC) to evaluate the performance of the classifiers on
the test dataset.

In our experiments, the band power of the EEG
signal is used as the extracted features (observations)
for the classification phase. The window length was
equal to the sampling rate of the dataset and we used

the last two seconds of the data to perform the classi-
fication in the test phase.

In the second set of experiments, we used the ap-
proach explained in section 4 to create an ensemble
of classifiers. For all classifiers except NNCRF, we
have created the ensemble using different values of
the BCI hyper-parameters as explained in section 4.
For NNCRF, along with the BCI hyper-parameters, we
have also used different values of the number of neu-
rons in the hidden layer of the NNCRF algorithm to
create the ensemble. The Bayesian optimization al-
gorithm ran for at most 50 iterations or until cross-
validation accuracy plateaued. We repeated our ex-
periments five times to reduce the effect of random
seed. The average number of iterations of the Bayesian
optimization algorithm for all different classifiers was
27.

Table 1 shows the results of comparing different
classifiers when we used an ensemble of classifiers.
The columns with the label ”Default” correspond to
the results of not using the ensemble approach. In
Table 1, the columns with the ”Ensemble” label cor-
respond to the results of using an ensemble of each
of the classifiers. The results shown in Table 1 are
obtained by evaluating the classifiers on the indepen-
dent test dataset of each subject. Figure 1 (which is
a summary of Table 1) shows the average AUC of dif-
ferent algorithms when we used Bayesian optimiza-
tion compared to using the default value of the hyper-
parameters.
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Figure 1: Average AUC of different classifiers across all subjects.
The blue bars correspond to the average AUC when the default
value of the hyper-parameters have been used. The red bars cor-
respond to the average AUC after using our ensemble learning al-
gorithm. The numbers on top of each bar correspond to the AUC of
each algorithm.

Qualitative comparison of different algorithms in
Tables 1 suggests the following: 1) our proposed
ensemble learning approach considerably improves
the performance of any classifier for almost all sub-
jects, 2) HMM is the worst performing classifier, 3)
NNCRF outperforms other algorithms in terms of av-
erage AUC across all subjects on the test dataset, and
4) interestingly, for some subjects none of the discrim-
inative sequence labeling classifiers had a good per-
formance - this means that these classifiers are not
able to capture the temporal structure of the signal
in these subjects.
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Table 1: The results of comparing different algorithms on the test dataset. Default is the results of using the default values of the hyper-parameters. Ensemble
corresponds to the results of the ensemble learning approach. Highlighted cells show the algorithm for which the performance is the best.

LR SVM HMM HSVM CRF NNCRF
Subject Default Ensemble Default Ensemble Default Ensemble Default Ensemble Default Ensemble Default Ensemble

1 0.617162 0.708 ±0.003 0.471583 0.684 ±0.008 0.4704 0.572 ±0.003 0.566726 0.682 ±0.004 0.554054 0.651 ±0.006 0.565342 0.653 ±0.004
2 0.605175 0.663 ±0.004 0.534574 0.668 ±0.002 0.577131 0.647 ±0.014 0.602029 0.647 ±0.003 0.640085 0.66 ±0.004 0.681072 0.658 ±0.004
3 0.66646 0.709 ±0.003 0.659264 0.721 ±0.004 0.64575 0.688 ±0.003 0.642878 0.724 ±0.001 0.689771 0.735 ±0.002 0.691368 0.743 ±0.004
4 0.672782 0.769 ±0.002 0.618411 0.758 ±0.003 0.556342 0.571 ±0.004 0.592601 0.749 ±0.004 0.594204 0.725 ±0.006 0.540245 0.722 ±0.003
5 0.559119 0.629 ±0.003 0.559787 0.622 ±0.007 0.510666 0.509 ±0.003 0.509916 0.655 ±0.003 0.473098 0.618 ±0.006 0.493071 0.632 ±0.004
6 0.67886 0.692 ±0.004 0.652671 0.729 ±0.003 0.484071 0.63 ±0.015 0.629371 0.718 ±0.002 0.692138 0.731 ±0.005 0.700657 0.73 ±0.006
7 0.725141 0.762 ±0.002 0.710272 0.778 ±0.002 0.605163 0.71 ±0.01 0.68268 0.802 ±0.002 0.671861 0.751 ±0.003 0.666293 0.755 ±0.004
8 0.708607 0.729 ±0.002 0.706152 0.736 ±0.002 0.508587 0.633 ±0.034 0.541939 0.658 ±0.013 0.629435 0.697 ±0.011 0.717994 0.779 ±0.004
9 0.616434 0.626 ±0.006 0.606463 0.638 ±0.007 0.527084 0.598 ±0.013 0.564801 0.687 ±0.009 0.591498 0.669 ±0.005 0.588181 0.686 ±0.003
KT 0.766713 0.826 ±0.004 0.722982 0.818 ±0.002 0.711457 0.732 ±0.006 0.70759 0.827 ±0.004 0.789081 0.871 ±0.005 0.839713 0.881 ±0.004
CS 0.723935 0.733 ±0.004 0.727856 0.763 ±0.004 0.76225 0.637 ±0.01 0.706031 0.777 ±0.003 0.828081 0.831 ±0.004 0.797626 0.833 ±0.006
CB 0.610225 0.597 ±0.002 0.604169 0.6 ±0.003 0.547909 0.554 ±0.006 0.579983 0.617 ±0.003 0.615299 0.626 ±0.005 0.637969 0.631 ±0.003
ID 0.585436 0.605 ±0.002 0.573955 0.642 ±0.008 0.603535 0.518 ±0.004 0.588246 0.667 ±0.007 0.668705 0.682 ±0.011 0.706668 0.723±0.013
AVERAGE 0.657 0.696 0.627 0.705 0.578 0.616 0.609 0.708 0.649 0.711 0.664 0.725
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To statistically compare the performance of the
different classification methods, the Friedman statis-
tical test was performed. The Friedman test [32] is
a non-parametric statistical test, which ranks differ-
ent classifiers for each subject separately. It then av-
erages the ranks over all subjects. The algorithm with
the lowest rank is the best performing one. Figure 2
shows the average rank of different classifiers. The
best performing classifier is the ensemble of NNCRFs.
In all classification algorithms, using the ensemble
approach considerably improves the average rank.

In the Friedman test, the null hypothesis assumes
that all algorithms have the same performance (thus,
they have the same rank). After performing the Fried-
man test, the p-value was 4.34E-11. α was chosen
to be 0.05. This p-value is low enough to reject the
null hypothesis, therefore we conclude that the differ-
ence between algorithms is not random. Another set
of statistical tests are performed to identify which al-
gorithms are the source of difference. We conduct the
Holm’s [32] test as the post-hoc statistical test. In the
post-hoc test, we perform pairwise comparison of all
the other classifiers versus the best classifier (i.e. en-
semble of NNCRFs) in terms of the average rank.
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Figure 2: Average rank of different classifiers across all subjects.
The blue bars correspond to the average rank when the default
value of the hyper-parameters have been used. The red bars cor-
respond to the average rank after using our ensemble learning al-
gorithm.

Hypothesis P-value
11 HMM vs. NNCRF(ensemble) 8.13E-09

10 HMSVM vs. NNCRF(ensemble) 3.37E-08

9 HMM(Ensemble) vs. NNCRF(ensemble) 1.70E-06

8 SVM vs. NNCRF(ensemble) 9.29E-06

7 CRF vs. NNCRF(ensemble) 1.57E-04

6 LR vs. NNCRF(ensemble) 4.07E-04

5 NNCRF vs. NNCRF(ensemble) 9.03E-03

4 LR(Ensemble) vs. NNCRF(ensemble) 1.03E-01

3 SVM(Ensemble) vs. NNCRF(ensemble) 2.53E-01

2 HMSVM(Ensemble) vs. NNCRF(ensemble) 3.41E-01

1 CRF(Ensemble) vs. NNCRF(ensemble) 4.46E-01

Table 2: P-values corresponding to pairwise comparison of differ-
ent classifiers versus the best performing classifier. α is chosen to
be 0.05. All hypothesis with p-value less than 0.001 are rejected.

In this statistical test, each null hypothesis states

that the best classifier and the other classifier have
the same mean rank. The p-values corresponding
to pairwise comparison of classifiers are shown in
Table ??. According to the Holms test results, the
null hypothesis 1 through 5 are not rejected. This
means that the difference between the ensemble of
NNCRFs and other ensemble algorithms is not sig-
nificant. However, the statistical tests show that the
ensemble of NNCRFs is significantly better than non-
ensemble methods.

7 Conclusion

In this study, we proposed a discriminative sequence
labeling algorithm (classifier), to capture the dynam-
ics of the EEG signal. We evaluated the performance
of our algorithm (which we denote as NNCRF) on two
self-paced BCI datasets and showed that it is superior,
compared to classical classifiers and sequence label-
ing classifiers. NNCRF is a combination of a neural
network and a CRF classifier. We demonstrated that
CRF and NNCRF can capture the temporal properties
of the EEG signal and improve the accuracy of the
BCI in most of the subjects. In some subjects how-
ever, the temporal structure of the EEG data is dif-
ficult to capture by these classifiers. The neural net-
work part of NNCRF converts the original observation
vector into a new representation which is then fed to
the CRF part. The non-linear transformation (by the
neural network) of the observation vector helps the
CRF part to easily discriminate between the different
control and NC.

Overall, the reason for the poor performance of
classical approaches is that they do not exploit the dy-
namics of the EEG signal. As for the HMM, although
this algorithm models the temporal correlations in an
EEG signal, its poor performance stems from the fact
that it focuses on learning each mental task separately
(i.e. without learning to discriminate between them).
On the other hand, discriminative sequence labeling
classifiers do not only model the temporal properties
of each mental task, they also model the transition
from one metal task to another (e.g. transition from
movement to NC state).

We also showed that using an ensemble of classi-
fiers that have been trained on different parts of the
BCI hyper-parameter space can further improve the
performance. We used Bayesian optimization to find
the different values of the BCI hyper-parameters. Se-
lecting different values for the hyper-parameters ex-
poses each individual classifier to different parts of
the BCI hyper-parameter space. We believe that this
diversification is the key to the superiority of using
the ensemble of classifiers. The performance of each
individual classifier is very sensitive to the choice of
the hyper-parameters of the BCI and using an ensem-
ble of classifiers can decrease the variance of the final
classifier.

The best performing algorithm was the ensem-
ble of NNCRF classifiers both in terms of the aver-
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age rank and average AUC of the final classifier. We
statistically compared the performance of different
classifiers to the ensemble of NNCRFs. The results
showed, for SVM, LR, HMSVM and CRF, the ensem-
ble learning approach results in significantly better
performance compared to the single classifier with
default value of the hyper-parameters. For NNCRF,
the Holm’s statistical test showed that the difference
between NNCRF and the ensemble of NNCRF was
not significant. However, the performance of the
ensemble of NNCRFs was considerably better than
the single NNCRF with default values of the hyper-
parameters.

In this study, we used linear chain discriminative
sequence labeling classifiers, i.e. the type of the fea-
ture functions used in this study were all inspired by
Hidden Markov Models. So they are all local in na-
ture, with each feature function only depending on
the current or the previous label in the sequence. It
is possible to use global features such as the ones that
capture higher orders of dependency of the transition
between consecutive labels, or feature functions that
capture dependency between the EEG signal and la-
bels of the EEG signal from distant past. These types
of feature functions have the ability to capture more
complex structures in the data and increase the power
of each individual classifier.

Appendix

A. Block Diagram of the Learning

Figure 3 shows a simple block diagram of one iter-
ation of our ensemble learning algorithm (which is
explained in Section 4). In our approach the BCI
is like a self-regulating system which improves itself
based on the feedback that it receives from the clas-
sification block. The cross-validation accuracy of the
classifier is given to the Bayesian optimization block,
and this block proposes new values for the hyper-
parameters for next iteration of the algorithm. The
hyper-parameter values are used to extract features
from the EEG signal, and a new classifier is trained
using the features extracted from the training data.
The extracted features are the power values in the fre-
quency bands proposed by the Bayesian optimization
block.

Figure 3: A simple block diagram of one iteration of
our proposed ensemble learning algorithm.

Each iteration of our ensemble learning approach
generates a classifier (Lt). After running the algo-
rithm for T iterations, we will have T different clas-
sifiers which are trained on different parts of the
BCI hyper-parameter space. Eventually, the classifiers
(L1,L2, ...,LT ) are combined (using averaging) to build
a final classifier which is evaluated on the unseen test
dataset.
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